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A phase-space semiclassical approximation valid toOs"d at short times is used to compare semiclassical
accuracy for long-time and stationary observables in chaotic, stable, and mixed systems. Given the same level
of semiclassical accuracy for the short time behavior, the squared semiclassical error in the chaotic system
grows linearly in time, in contrast with quadratic growth in the classically stable system. In the chaotic system,
the relative squared error at the Heisenberg time scales linearly with"eff, allowing for unambiguous semiclas-
sical determination of the eigenvalues and wave functions in the high-energy limit, while in the stable case the
eigenvalue error always remains of the order of a mean level spacing. For a mixed classical phase space,
eigenvalues associated with the chaotic sea can be semiclassically computed with greater accuracy than the
ones associated with stable islands.
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I. INTRODUCTION

Semiclassical methods have a long history traceable to the
very beginnings of the “old quantum theory” and serve two
interrelated purposes in many areas of physics. First, semi-
classical methods provide valuable approximation techniques
in situations where a full quantum calculation is either im-
possible or unnecessary. Equally importantly, semiclassical
methods provide a link between quantum results and our
classical intuition, and allow us to separate physical behavior
that is due simply to classical paths and their interference
from behavior that is attributable to nonclassical processes
such as tunneling or diffraction.

For strongly chaotic systems, purelyclassicalcalculations
in d dimensions that ignore phase effects must break down at
the mixing time or log timeTlog,l−1ln N,l−1sd−1dln "eff

−1,
wherel is the maximal Lyapunov exponent of the classical
dynamics andN,"eff

−sd−1d is the effective dimension of the
accessible Hilbert space, or the size of the accessible classi-
cal phase space in Planck cell units. This breakdown of
classical-quantum correspondence occurs because beyond
the mixing time, multiple classical paths connect a generic
initial state to a generic final state, and interference effects
becomeOs1d. On the other hand, in a series of papers, Heller
and co-workers showed thatsemiclassicalcalculations in
chaotic systems, which include the effect of interference be-
tween distinct classical paths, can follow the quantum propa-
gator at times well beyond the mixing time[1]. An estimate
for the breakdown time scale of semiclassical-quantum cor-
respondence was obtained by quantifying the effects of caus-
tics for a stadium billiard[2].

Over the past decade, significant light has been shed on
the issue of semiclassical accuracy and its breakdown in di-
verse chaotic and regular systems. For example, Boasman
has used a semiclassical approximation to the boundary in-
tegral method to obtain a semiclassical spectrum for two-
dimensional chaotic billiards, observing an overall semiclas-
sical spectral shift as compared with the exact quantum
spectrum, in addition to small random fluctuations[3]. On
the other hand, Prosen and Robnik have shown the complete

failure of torus quantization to reproduce the spectra of two-
dimensionalintegrable billiards, such as the circle billiard
[4], suggesting that integrability may in some cases lead to
an increase of semiclassical errors; Rahavet al. have ob-
tained more recent results consistent with this conclusion[5].
Primack and Smilansky were among the first to analyze
semiclassical accuracy for three-dimensional chaotic sys-
tems, focusing on including corrections to the state-counting
function beyond the leading Weyl term[6].

Main and collaborators have developed the powerful har-
monic inversion technique for accurate and efficient semi-
classical calculations of energies, resonances, and matrix el-
ements[7]. This technique, as well as the earlier cycle-
expansion method[8] were applied recently to the four-
sphere scattering problem, demonstrating a high degree of
accuracy at a greatly reduced computational cost compared
with brute-force quantum calculations[9]. Another promis-
ing recent approach, put forward by Vergini and co-workers,
involves the accurate construction of quantum eigenstates as
linear superpositions of “scar functions” associated with
short unstable periodic orbits[10].

In the time domain, statistical arguments concerning the
propagation of semiclassical errors have shown that semi-
classical error in chaotic systems accumulates incoherently,
and thus the squared error typically grows only linearly with
time, in contrast with quadratic growth for the regular case
[11]. Transforming to the energy domain, this implies that
semiclassical methods are generically more accurate for
computing wave functions and eigenvalues for chaotic sys-
tems than for regular ones, in the"eff→0 (or high energy)
limit. In particular, for d=2, analytical arguments and nu-
merical tests show that eigenvalues can be semiclassically
resolved with great accuracy for chaotic systems, for suffi-
ciently small"eff, while in the regular case even the order of
eigenvalues cannot be unambiguously determined semiclas-
sically. This result has been related to the reduction of the
quantization ambiguity in chaotic systems[12] and to the
slower decay of fidelity in the presence of strong chaos(as
long as the perturbation has nonzero diagonal matrix ele-
ments in the basis of the unperturbed system) [13].
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Both the theoretical analysis and the numerical tests in
Ref. [11] were performed for semiclassical evolution in the
position representation, i.e., for the Van Vleck–Gutzwiller
propagator[14]. Although well suited for the model systems
treated in that work, position-representation semiclassics suf-
fers in general from the problem of proliferation of caustics,
which eventually dominate the semiclassical propagator[2].
The problem becomes particularly acute when one attempts
to compare semiclassical dynamics in hard chaotic systems
with that in a regular system or in a mixed phase space.
Semiclassical calculations in a phase space basis are more
natural from the point of view of classical-quantum corre-
spondence and have the inherent advantage of allowing di-
rect comparison between time evolution in chaotic, regular,
and mixed systems, without the result being overwhelmed by
the problem of position-space or momentum-space caustics.

The aim of this paper is to improve our understanding of
semiclassical accuracy in a phase space representation, as a
function of time and"eff, and to directly compare the behav-
ior of the semiclassical error in chaotic, regular, and mixed
systems. The organization is as follows. In Sec. II we briefly
present the model and the method used for performing semi-
classical and quantum calculations in phase space. Theoreti-
cal expressions for semiclassical accuracy in chaotic systems
are presented in Sec. III A, along with supporting numerical
data from the model system. In addition to generalizing the
analysis of Ref.[11] from position space to a phase space
representation, we explicitly test the prediction of Ref.[11]
concerning the linear growth with the time of the mean
squared semiclassical error, as well as the prediction of linear
decrease with" of the error at the Heisenberg time. This is
followed by a similar analysis for regular and mixed sys-
tems, in Secs. III B and III C, respectively. Finally, Sec. IV
summarizes the results and presents an outlook for the fu-
ture.

II. MODEL AND METHOD

Although our theoretical analysis applies quite generally
to two-dimensional noninteracting systems, we simplify the
numerical simulations by focusing on one-dimensional
kicked maps, which share most scaling and other physical
properties of this class of systems[15]. The discrete-time
map can be regarded as a Poincaré surface of section of a
two-dimensional system with Hamiltonian dynamics. Spe-
cifically, we parametrize the one-step map on a toroidal clas-
sical phase spacesq,pdP f0,1d3 f0,1d as

p0 → p1 = p0 − V8sq0d mod 1,

q0 → q1 = q0 + T8sp1d mod 1, s1d

where

Vsqd = −
1

2
mqq

2 −
Kq

s2pd2 sin s2pqd,

Tspd =
1

2
mpp

2 +
Kp

s2pd2 sin s2ppd. s2d

The dynamics is iterated to obtain classical evolution over
many kicks (or many bounces in the corresponding two-
dimensional Hamiltonian system). For valuesmq=mp=1 and
0, uKqu , uKpu,1, for example, we obtain the purely chaotic
perturbed cat map, or kicked inverted oscillator, while for
mq=−1, mp=1 and smallKq,Kp, the dynamics is predomi-
nantly regular, corresponding to a kicked regular oscillator.
ParametersKq andKp are essential to introduce nonlinearity
into the dynamics(if Kq=Kp=0, the semiclassical propagator
is exact, for any integersmq andmp). The above four param-
eters can also be adjusted to vary the Lyapunov exponent in
the chaotic regime, or to study a mixed phase space, as we
will see below in Sec. III.

The one-step quantum evolution matrix for the above sys-
tem takes the very simple form

Û1 = expf− iT̂sp̂d/"gexpf− iV̂sq̂d/"g, s3d

which again may be iterated or diagonalized to obtain long-

time or stationary behavior,Ût=fÛ1gt. As discussed in the
introduction, we will apply this propagator to Gaussian wave
packets(or coherent states) centered at phase space points
(qk, pk):

fksqd = N expf− sq − qkd2/2" + ipksq − qkd/"g, s4d

whereN is a normalization constant.
Unfortunately, there is not a unique and universally used

semiclassical approximation for wave packet evolution,
analogous to the Van Vleck–Gutzwiller expression in posi-
tion or momentum space. Several methods have been pro-
posed that differ in both the order(in "eff) of the semiclassi-
cal error at fixed timet and in the numerical size of that
error. The so-called “thawed Gaussian” approximation, for
example, allows the shape of the Gaussian wave packet to
change as it evolves under a locally quadratic potentialVsqd
[16]. An alternative approach uses “frozen” or unspreading
wave packets[17]. Another coherent state method retains the
stationary phase idea of the Van Vleck–Gutzwiller propaga-
tor but extends dynamics into complex phase space[18]. It is
possible instead to work in complex time while retaining real
initial conditions in phase space[19].

In the present work, we are not interested in reducing the
numerical size of the semiclassical error but only in under-
standing its scaling properties witht and"eff, for regular and
chaotic systems. For this reason, we will choose what is a
convenient method for our purposes, noting that the results
would hold for any semiclassical approximation valid to the
same order in"eff. We essentially use a variation of the
thawed Gaussian method, extended to next-to-leading order
in Î"eff, and then calculate semiclassically the overlaps of
the time-evolved “thawed” Gaussians with the Gaussians in
the original basis[20].

Specifically, we start with a(nonorthogonal) complete set
of N=1/2p" Gaussiansf j of the form given in Eq.(4), with
the center pointssqj ,pjd offset slightly from a rectangular
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grid to reduce numerical instabilities. The semiclassical over-
lap matrix

A0s j ,kd = kf jufklSC s5d

is obtained analytically by Gaussian integration. To evaluate
the t-step semiclassical propagatorAts j ,kd between initial
Gaussianfk and final Gaussianf j, we find real classical
trajectories fromsq0,p0d to sqt ,ptd in time t that minimize
sq0−qkd2+sp0−pkd2+sqt−qjd2+spt−pjd2, i.e., all trajectories
that start near the center of Gaussiank and end near the
center of Gaussianj after t steps. Of course for fixedt and
sufficiently small " st,Tlog,l−1ln "−1d, there will be at
most one such trajectory, and in principle that is all we need
even for our long-time analysis, as will be seen below. In
practice, however, for finite values of" we include all con-
tributing trajectories. For each trajectory, the potentialVsqd
is expanded tothird order around the starting position of the
trajectory,q0. When this potential is applied to the original
Gaussianfk, we obtain a wave packet of the form

expfa + bsq − q0d + csq − q0d2 + dsq − q0d3g

= expfa + bsq − q0d + csq − q0d2g

3f1 + dsq − q0d3 + Os"dg, s6d

wherea, b, c, andd are complex numbers of order"−1, and
thereforeq−q0 is Os"1/2d. We note that an “extended” semi-
classical dynamics[21], which truncates the expansion of the
Hamiltonian at third order rather than second order is needed
to keep the error in the one-step phase space propagator at
Os"d, consistent with the error in the Van Vleck–Gutzwiller
propagator in position space[14].

The wave packet of Eq.(6) may now be rewritten, via
Fourier transform, as a momentum space wave packet having
the same form but expanded in powers ofp−p1 instead of
q−q0. The kinetic termTspd of the Hamiltonian may now be
applied, again expanded to third order inp−p1. Then, the
packet is Fourier transformed back to position space and the
procedure is repeatedt times. At the end oft steps, we may
analytically find the overlap between the semiclassically
evolvedt-step wave packetfk,SCstd, still having the form of
Eq. (6), and the final Gaussian wave packetf j to obtain the
semiclassical propagatorAts j ,kd. If several classical paths
lead from the vicinity offk to the vicinity of f j in time t,
their contributions must be summed to produce the semiclas-
sical amplitudeAts j ,kd, just as in the Gutzwiller expression.
As we will see in Sec. III A, for a chaotic system the long-
time semiclassical propagator may be arbitrarily well ap-
proximated(in the "→0 limit) using only the matrixAt for
1! t!Tlog, where at most one path contributes to each ma-
trix element. However, as we are dealing with finite" in our
numerical simulations, we will always use the sum over all
classical paths in numerical calculations.

III. SEMICLASSICAL ACCURACY

A. Chaotic dynamics

As discussed previously in the context of position-space
semiclassical propagation, direct comparison between quan-

tum and semiclassical evolution at long times for a chaotic
system, or between quantum and semiclassical stationary
properties for such a system, faces the obstacle of the expo-
nential proliferation of classical paths[1]; an analogous
problem of exponential growth in the number of periodic
orbits exists in the energy domain[14,8,23]. This prolifera-
tion seemingly makes long-time semiclassical propagation in
a classically chaotic system an exponentially harder problem
than the full quantum evolution, puts into question the con-
vergence of long-time semiclassical dynamics to any station-
ary behavior, and prevents the comparison of semiclassical
and quantum stationary properties for small". The threefold
difficulty can be addressed using the idea that the Heisenberg
uncertainty principle washes out information on scales below
", and thus the total amount of semiclassical information is
finite for all times and scales only as a power of". We can
therefore collect, consolidate, and iterate semiclassical am-
plitude on sub-" scales, obtaining the full semiclassical long-
time dynamics to arbitrary accuracy in polynomial computa-
tion time. This “semiclassical path consolidation” idea has
previously been used successfully to investigate long-time
semiclassical accuracy in the position representation for cha-
otic dynamics[20,11] and to demonstrate the semiclassical
nature of dynamical localization in one dimension[22]. Con-
ceptually, the approach is similar to cycle expansion methods
in periodic orbit theory[8,23]; however, no information
about periodic orbits is needed here. Instead of accounting
for long-time semiclassical behavior in terms of periodic
paths up to periodtperiodic,Tlog, we useall short paths up to
lengtht,1. In the following, we adapt the methods of Ref.
[11] to a phase space representation, and refer the reader to
that earlier paper for a detailed discussion.

We begin by noting that although semiclassical dynamics
is not multiplicative, due to the fact that a concatenation of
two stationary paths is in general not stationary, we may
nevertheless write

At1+t2
s j ,kd = o

,,,8

At2
s j ,,8dA0

−1s,8,,dAt1
s,,kd + Os"d

= fAt2
A0

−1At1
gs j ,kd + Os"d, s7d

where theOs"d error is due to the intermediate sums being
done exactly rather than by stationary phase, and the inverse
of the semiclassical overlap matrixA0 is necessary due to
nonorthogonality. In general, we may approximate the true
time-t semiclassical propagatorAt by evaluating the exact
semiclassical dynamics to some “quantization time”t and
then iterating the resulting matrix:

At,t = At mod tfA0
−1Atgft/tg, s8d

where ft /tg is the integer part oft /t. We may callAt,t the
“t-semiclassical” propagator. Fort=1, At,t is the one-bounce
semiclassical quantization pioneered by Bogomolny[24].
For a continuous-time system, thet!1 limit is equivalent to
quantum propagation via the Feynman path integral ap-
proach. The exact time-t semiclassical propagator, on the
other hand, is recovered in the opposite limit when the quan-
tization time approachest:
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At,t → At ast → t. s9d

In Ref. [11], it was shown analytically and numerically that
the error uAt,ts j ,kd−Ats j ,kdu2 falls off as Tcl /t in a chaotic
system, whereTcl is the time scale of classical correlations.
This implies that fort@Tcl the approximate semiclassical
correlatorAt,t is closer to the exact semiclassical correlator
than either is to the quantum dynamics:

uAt,t − Atu ! uAt − Utu.

Thus

uAt,t − Utu →
t@Tcl

uAt − Utu s10d

allowing for an unambiguous determination of the error in
the true semiclassical dynamicsAt at time t using At,t and
permitting a study of the breakdown of the semiclassical
approximation at long timest where performing an exact
sum overOseltd classical paths is impractical or impossible.

To confirm the convergence of the iterated propagatorAt,t
to the true long-time semiclassical propagatorAt for semi-
classical dynamics in phase space, and specifically the con-
vergence of the semiclassical error in accordance with Eq.
(10), we first compute, as a function of timet, the average
t-semiclassical error defined as

Et,t = i At,t − Uti
2

= TrfAt,t − Utg†fAt,t − Utg

= o
j ,k

uAt,ts j ,kd − Uts j ,kdu2. s11d

The results are shown in Fig. 1 for a chaotic kicked map
defined by parametersmq=mp=1 and Kq=Kp=1/2, with
semiclassical parameterN=256. We notice the relatively
poor agreement between the iterated semiclassical calcula-

tion for t=1 and similar calculations for larger quantization
timest. We also note that using the iterated propagator with
short quantization timet overestimates the true size of the
semiclassical error. At the same time, we observe rapid con-
vergence ofEt,t ast@1, with thet=5 andt=6 curves lying
almost on top of one another. Thus thet-semiclassical error
Et,t appears to be rapidly approaching the true semiclassical
error

Et = o
j ,k

uAts j ,kd − Uts j ,kdu2. s12d

We are now ready to investigate the semiclassical errorEt
as a function of timet and semiclassical parameterN. For a
chaotic system, we may assume that the errors associated
with the semiclassical approximation add incoherently as
long as the times at which the errors occur are separated by
at least the classical time scaleTcl [11]. Since the squared
error in the semiclassical approximation over one time step is
E1=Osh2d=Os1/N2d, we obtain

Et = C1h
2t = hC1S t

N
D , s13d

whereC1,Tcl is a system-dependent constant and we take
t=1 to correspond to one period of the kicked map. The
linear growth of the error predicted by Eq.(13) breaks down
at times comparable to the Heisenberg time, where we must
include an additional error term that is diagonal in the eigen-
basis of the true quantum propagatorU1 [11]. The error as-
sociated with diagonal matrix elements adds coherently,
leading to quadratic growth of the cumulative error in time.
However, the fraction of diagonal matrix elements scales as
h=1/N. Equation(13) must therefore be modified to read

Et = C1h
2t + C2h

3t2 = hFC1S t

N
D + C2S t

N
D2G . s14d

The data in Fig. 1 fortù4 show good agreement with the
prediction of Eq.(14), which is indicated by the upper solid
curve. The linear growth indicated by Eq.(13), shown as the
lower solid line, is valid for timest short compared with the
Heisenberg timeN.

In Fig. 2, we confirm the behavior predicted by Eqs.(13)
and (14) as we vary the semiclassical parameterN=1/h. In
this figure, the errorEt,t has been scaled by a factor ofN to
make the curves at different values ofN approximately co-
incide and to emphasize that the error at a fixed fraction of
the Heisenberg time is falling off ash,1/N in the semiclas-
sical limit h→0.

Specifically, we may ask about the size of the semiclassi-
cal error at the Heisenberg time itself, i.e., att /N=1, which
corresponds to the right edge of the graph in Figs.1 and 2.
The scaling of the error at the Heisenberg time determines
the feasibility of semiclassically computing individual eigen-
states and eigenvalues in the limit of small"eff, correspond-
ing physically to the high-energy limitE@Egs. Based on Eq.
(14), we predict the error at the Heisenberg time to be pro-
portional toh:

Et=N = hfC1 + C2g. s15d

FIG. 1. The mean squaredt-semiclassical errorEt,t in a chaotic
system is plotted as a function oft /N for semiclassical parameter
N=256 and for several values of the quantization timet. For t
@1, Et,t is a reliable proxy for the true semiclassical errorEt. The
classical system parameters for Eq.(2) are mq=mp=1; Kq=Kp

=1/2. The lower andupper solid curves represent the theoretical
predictions forEt given by Eqs.(13) and (14), respectively, with
C1=0.017 andC2=0.037.
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This prediction is tested in Fig. 3, where the black squares
represent the numerical data and the corresponding solid line
is a best fit to a power-law form,Et=N=ahb=aN−b, with b
<0.8. This is to be compared with the asymptotic prediction
b=1 for h→0. The falloff in the error withN shows that
individual eigenstates and eigenvalues may be determined
with ever improving accuracy asN→`. As we will find in
the following section, this is in contrast with the situation for
systems with regular classical dynamics(see also the white
squares in Fig. 3).

The semiclassical spectrum and semiclassical eigenstates
can be obtained in principle by computing the semiclassical
propagatorAt for long times and transforming into the en-
ergy domain. However, since the semiclassical propagatorAt
at long times becomes approximately multiplicative[11],

Ast + 1d < A*Astd, s16d

for some constant matrixA* , it is much more convenient to
diagonalizeA* directly to obtain the semiclassical eigenval-
ues and wave functions. We emphasize thatA* is neither the
quantum evolution matrixU1 nor the semiclassical evolution
matrix A1 for one time step, but is instead the effective one-
step semiclassical propagator that describes semiclassical
evolution at long times, and thus the stationary behavior of
the semiclassical dynamics[11]. In practice, we may obtain
A! as the limit

A* = lim
t→`

A*,t = lim
t→`

Ast + 1dfAstdg−1. s17d

As discussed in Ref.[11], the convergenceA*,t→A* is ex-
ponentially fast int, at least for the position space semiclas-
sical propagator:

uuA*,t − A* uu2 , h2e−lt. s18d

In Fig. 4, we verify this convergence in the case of the phase
space semiclassical propagator for two different values of
N=1/h (white and black circles). The rate of convergencel
is consistent with the classical value of the Lyapunov expo-
nent, and is independent of". The white triangles correspond

FIG. 2. The mean squaredt-semiclassical errorEt,t for a chaotic
system is plotted as a function oft /N for t=5@1 and several
values of the semiclassical parameterN=1/h=64, 128, 256. The
classical system parameters are the same as in the previous figure.
The lower and upper solid curves represent the theoretical predic-
tions of Eqs.(13) and (14), respectively. The dotted line indicates
the predicted growth of the error for a system withregular dynam-
ics, Et, t2 (see Sec. III B), and is shown to emphasize the qualita-
tively different behavior.

FIG. 3. The semiclassical error at the Heisenberg time,Et=N,t is
plotted for t=5@1, and for three values of the semiclassical pa-
rameterN=1/h. Black squares correspond to the chaotic system of
the previous two figures, while white squares correspond to the
regular system of Sec. III B. The straight lines are fits to the power-
law form Et=N=aN−b, with the best fit givingbchaotic=0.8 and
bregular=0.1, to be compared with the theoretical predictions
bchaotic=1 [Eq. (15)] andbregular=0 [Eq. (21)].

FIG. 4. The convergence of the finite-time approximation to the
long-time one-step semiclassical propagatorA* is studied for sev-
eral systems and different values of the semiclassical parameterN
=1/h [see Eq.(17)]. The circles represent data for the same system
parameters that were used in the previous three figures, white and
black circles corresponding toN=64 and N=144, respectively.
White triangles represent data forN=64 with an alternative set of
parameters:mq=2, mp=1, Kq=Kp=1/2 in Eq.(2), having a larger
Lyapunov exponent. The solid lines for the two systems are the
predictions of Eq. (18), with l=cosh−1s3/2d=0.96 and l
=cosh−1s2d=1.32, respectively. The white and black squares(N
=64 andN=256, respectively) represent data for the regular dynam-
ics discussed in Sec. III B, where no convergence witht is pre-
dicted or observed.
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to an example with a larger Lyapunov exponent[mq=2, mp
=1, Kq=Kp=1/2 in Eq.(2)], where the convergence witht is
correspondingly faster.

Exponentially fast convergence toA* with t implies that
the semiclassical spectrum and semiclassical wave functions
can be obtained with very high accuracy using semiclassical
dynamics fort.1 but still short compared to the Heisenberg
time t=N or even the log timeTmix. In other words, all the
information needed to calculate long-time or stationary semi-
classical properties is already contained in the short-time
classical behavior, well before interference effects become
relevant.

The stationary semiclassical spectrum and wave functions
can now be compared with their quantum analogs. From the
linear scaling withh of the error in the time evolution at the
Heisenberg time, Eq.(15), which has been tested above in
Fig. 3, we can deduce that the mean squared error in the
eigenvalues must also scale linearly withh, ignoring a pos-
sible overall shift in the spectrum[12] which is absent in the
present system due to symmetry. Thus

F =
1

N
o
i=1

N
sei,SC− eid2

D2 , h =
1

N
, s19d

where theei and ei,SC are the quantum and semiclassical
eigenvalues, andD is the mean level spacing. In practice, this
improvement in the semiclassical approximation for indi-
vidual eigenvalues ash→0 is difficult to measure due to
numerical errors. For example, for the same chaotic system
discussed previously(mq=mp=1, Kq=Kp=1/2), F is already
1.3310−5 for N=36.

B. Regular dynamics

We may easily change parameters in Eq.(2) to obtain
fully or almost fully stable classical dynamics and then re-
peat the semiclassical calculations and analysis of Sec. III A.
We choosemp=1, mq=−1, Kp=Kq=0.1. The small nonlin-
earity parametersKp andKq have been selected to reduce the
semiclassical error in the short-time propagator; as we will
see below, the semiclassical error grows much faster with
time here than in the chaotic case.

In a system with regular dynamics, a typical classical tra-
jectory repeatedly visits the same regions of phase space, and
errors in the semiclassical approximation are expected to add
coherently[12]. Thus, in contrast with the chaotic case, the
squared difference between the time evolution matrix for
quantum dynamics and its semiclassical counterpart is ex-
pected to grow quadratically with time:

Et = Ch2t2 = CS t

N
D2

, s20d

whereC is a classical constant that depends on the nonlin-
earity of the system, as well as on the typical number of
kicks needed for a typical classical trajectory to return to the
vicinity of its starting point. This quadratic growth of the
error, even at times short compared to the Heisenberg time
N, is to be contrasted with the result of Eq.(14) for a fully
chaotic system. The prediction of Eq.(20) is tested in Fig. 5,

where the quadratic growth is confirmed as well as the pre-
dicted scaling with the semiclassical parameterN=1/h. Fur-
thermore, the growth of the semiclassical error with time is
completely different in the regular and chaotic case, as can
be seen from the dotted lines in Figs. 2 and 5.

For a regular system at the Heisenberg timet=N, we ob-
tain an"eff-independent semiclassical error

Et=N = C, s21d

to be contrasted with the diminishing semiclassical error at
the Heisenberg time in the"eff→0 limit for a chaotic system,
as indicated by Eq.(15). The Heisenberg-time error for our
regular system is plotted for several values ofN in Fig. 3. We
note that the Heisenberg-time semiclassical error is larger for
the regular system as compared with a chaotic system at the
same value ofN, despite the fact that the one-step semiclas-
sical error is larger in the chaotic case.

The Os"0d error in the semiclassical evolution at the
Heisenberg time, as indicated by Eq.(21), suggests that
semiclassical eigenvalues and wave functions, if they exist,
do not approach the corresponding quantum eigenvalues and
wave functions in the"eff→0 limit. Instead, for a two-
dimensional system with regular classical dynamics, the
semiclassical error in the eigenvalues is proportional to the
mean level spacing, implying that even the order of eigen-
values in the spectrum cannot be unambiguously determined
using semiclassical methods.

The problem, however, is more serious still, as the semi-
classical dynamics for a regular system does not in general
approach a stationary behavior at long times. We recall that
for a chaotic system, the dynamics at long times approaches
multiplication by a constant matrixA* , whose eigenvalues
and wave functions determine the stationary properties of the

FIG. 5. The mean squaredt-semiclassical errorEt,t for a system
with regular dynamics, is plotted as a function oft /N for t=5@1
and several values of the semiclassical parameterN=1/h=64,128,
256. The classical system parameters aremp=1; mq=−1; Kq=Kp

=0.1. The solid curve represents the theoretical prediction of Eq.
(20), with C=0.0016. The dotted line corresponds to linear growth
of the error with time,Et, t, applicable to the chaotic case only[see
Eq. (13) and Fig. 2], and is shown to emphasize the very different
scaling behavior in the case of regular dynamics.
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system. In contrast, for a regular system, the convergence of
Eq. (17) does not hold, since the Lyapunov exponent van-
ishes. This lack of convergence is observed in the squares
plotted in Fig. 4, where it is seen that successive approxima-
tions to A* differ from one another atOs1/N2d=Os"eff

2 d. In
other words, the eigenvalues of the matrix defining semiclas-
sical evolution from timet to t+1 and the eigenvalues of the
matrix defining semiclassical evolution fromt+1 to t+2 dif-
fer from one another on the scale of a mean level spacing, so
no unique semiclassical spectrum can be defined that de-
scribes the long-time semiclassical behavior.

We note that a system with regular dynamics may be
separable, in which case one may have a special set of coor-
dinates for which semiclassical dynamics is exact(just as
semiclassics may be exact for special chaotic systems such
as the cat maps). The above results apply to the general
situation where separability may not hold, e.g., a pseudoin-
tegrable system or a generic polygonal billiard, and also to
the separable case when the quantization is done in a set of
coordinates other than the ones for which the equations of
motion separate. Assuming the semiclassics is not exact, and
independent of the initial size of the semiclassical error, the
semiclassical accuracy will progressively improve in the
"eff→0 or high-energy limit as long as the Lyapunov expo-
nent l is nonzero, until eventually individual eigenvalues
and wave functions become semiclassically resolvable. In
the case of zero Lyapunov exponent, this improvement does
not occur.

C. Mixed dynamics

Generic two-dimensional systems are neither fully regular
nor fully chaotic, and it is therefore of interest to study the
issue of semiclassical-quantum correspondence in the gen-
eral regime of “soft chaos.” A mixed classical phase space
can be obtained using parametersmq=Kp=0, mp=Kq=1 in
Eq. (2); for this system approximately 48% of phase space is
associated with the chaotic sea and the remainder consists of
stable islands. Based on our discussion in Secs. III A and
III B on the very different behavior of semiclassical accuracy
in chaotic and regular systems, respectively, it is natural to
ask whether semiclassical accuracy may vary with initial
conditions in the case of a mixed phase space.

We define a local version of the mean squared eigenvalue
error introduced in Eq.(19):

Ffk
= o

i=1

N

ukciufklu2
sei,SC− eid2

D2 , h =
1

N
, s22d

wherefk is one of the Gaussian wave packets introduced in
Sec. II, ci and ei are the eigenstates and eigenvalues of the
quantum dynamics, andei,SC are the semiclassically obtained
counterparts toei. In other words,Ffk

measures the error in
the semiclassical eigenvalues, weighing each eigenvalue er-
ror by the overlap of the corresponding eigenstate withfk. A
contour plot ofFfk

versus phase space coordinatesqk, pk is
shown in Fig. 6(a), for N=1/h=256.

We see that the semiclassical error is peaked in the major
stable regions of phase space, particularly in the large stable

island surrounding theq=p=0 stable fixed point, and to a
somewhat lesser extent in the islands associated with the
period-2 orbit atp=1/2. In contrast,Ffk

remains low in the
region of the chaotic sea, for example, in the vicinity of the
unstable orbit atq=1/2, p=0. The contour plot in Fig. 6(b)
shows the fraction of each wave packetfk consisting of
stable trajectories, and the similarity between the main fea-
tures in the two parts of the figure strongly suggests a corre-
spondence between semiclassical accuracy and classical
phase space structure.

The total semiclassical error for a mixed system is of
course dominated by the error associated with the stable re-
gions, and scales in the same way as the error for a regular
system in Sec. III B.

IV. SUMMARY

Phase-space semiclassical propagation allows us to make
direct comparison of semiclassical validity in chaotic and
stable classical systems. Using the same semiclassical ap-
proximation in both cases results in a semiclassical error that
scales with" in the same way at short times. However, the
growth of the error with time is very different in the two
situations. In the regular case, the error grows coherently
because each trajectory repeatedly visits the same regions of

FIG. 6. (a) The weighted semiclassical eigenvalue errorFfk
is

plotted as a function of phase space locationsqk,pkd for semiclas-
sical parameterN=256. The contour curves correspond toF
=0.001, 0.003, 0.005, 0.007(the thickest curve indicates the largest
error). The semiclassical eigenvalues are obtained by diagonalizing
A*,0 in Eq. (17). (b) For each wave packetfk used in (a), the
fraction of stable trajectories for that wave packet is calculated clas-
sically and again plotted as a function of wave packet location. The
contour curves correspond to stable fractions of 0.6, 0.9, 0.975(the
thickest curve corresponding to the most stable region).

SEMICLASSICAL ACCURACY IN PHASE SPACE FOR… PHYSICAL REVIEW E 70, 026223(2004)

026223-7



space phase; the mean squared error therefore grows qua-
dratically with time. In the chaotic case, this coherence effect
does not occur at times short compared with the Heisenberg
time, resulting in a linear growth of the mean squared error.

At the Heisenberg time itself, the mean squared error in
the propagator matrix elements becomesOs1d in the case of
a classically stable dynamics, making it impossible in gen-
eral to speak of well-defined semiclassical wave functions or
eigenvalues, i.e., ones that are independent of the choice of
semiclassical coordinates. For a given choice of coordinates,
semiclassical quantization generically will produce eigenval-
ues differing by the order of a mean level spacing from their
quantum counterparts. Different semiclassical quantizations
of a regular system will produce spectra differing from each
other at the same order, making it impossible to uniquely
determine even the order of eigenvalues in the spectrum via
semiclassical methods(unless a particularly favorable set of
coordinates can be chosen where semiclassics happens to be
exact, e.g., for a separable dynamics).

In contrast, semiclassical dynamics at the Heisenberg time
for a classically chaotic system becomes increasingly accu-
rate as the system energy is increased. In the energy domain,
the semiclassical error becomes a progressively smaller frac-
tion of a mean level spacing, so the spectrum can be semi-
classically determined with arbitrarily high accuracy when
very highly excited states are considered. The convergence
of semiclassical to quantum behavior for chaotic system is
expected to be independent of the particular semiclassical
method chosen(for example, it is independent of whether a
position, momentum, or phase space semiclassics is used) as
long as the methods have the same scaling with" at fixed
time.

All calculations in the present paper were performed for
time-dependent one-dimensional maps, whose scaling prop-
erties are equivalent to those of two-dimensional Hamil-
tonian systems. Ind=3 dimensions, or in an interacting sys-
tem, the Heisenberg time grows as a higher power of"−1

than in the two-dimensional single-particle case, resulting in
a larger accumulated semiclassical error by the Heisenberg
time for both chaotic and regular systems. For example, the
same scaling argument that leads to Eq.(15) for d=2 chaotic
systems predictsOs1d semiclassical errors at the Heisenberg
time for chaotic systems, independent of energy, i.e., eigen-
value errors that remain a constant fraction of a mean level
spacing. In other words, the breakdown time of the semiclas-
sical approximation will be proportional to the Heisenberg
time in three dimensions, even when the dynamics is chaotic
(and much shorter than the Heisenberg time for regular dy-
namics).

For dù4, e.g., in the case of two interacting particles in
two dimensions with no conserved quantities apart from total
energy, the semiclassical approximation is expected to break
down well before the Heisenberg time, even when the dy-
namics is fully chaotic. It would be interesting to investigate
this behavior quantitatively for model systems, and also to
ascertain how a higher-order semiclassical approximation
may enable semiclassical methods to remain valid for inter-
acting systems.
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